Numerical Methods for Controlled Hamilton-Jacobi-Bellman PDEs in Finance

نویسندگان

  • P. A. Forsyth
  • G. Labahn
چکیده

Many nonlinear option pricing problems can be formulated as optimal control problems, leading to Hamilton-Jacobi-Bellman (HJB) or Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations. We show that such formulations are very convenient for developing monotone discretization methods which ensure convergence to the financially relevant solution, which in this case is the viscosity solution. In addition, for the HJB type equations, we can guarantee convergence of a Newton-type (Policy) iteration scheme for the nonlinear discretized algebraic equations. However, in some cases, the Newton-type iteration cannot be guaranteed to converge (for example, the HJBI case), or can be very costly (for example for jump processes). In this case, we can use a piecewise constant control approximation. While we use a very general approach, we also include numerical examples for the specific interesting case of option pricing with unequal borrowing/lending costs and stock borrowing fees.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal Use of Central Differencing for Hamilton-Jacobi-Bellman PDEs in Finance

In order to ensure convergence to the viscosity solution, the standard method for discretizing HJB PDEs uses forward/backward differencing for the drift term. In this paper, we devise a monotone method which uses central weighting as much as possible. In order to solve the discretized algebraic equations, we have to maximize a possibly discontinuous objective function at each node. Nevertheless...

متن کامل

Determining the Optimal Control When Numerically Solving Hamilton-Jacobi-Bellman PDEs in Finance

Numerous financial problems can be posed as nonlinear Hamilton-Jacobi-Bellman (HJB) partial differential equations (PDEs). In order to guarantee that the discretized equations converge to the viscosity solution, the required conditions are pointwise consistency, l∞ stability, and monotonicity. We use the positive coefficient method, choosing central differencing as much as possible, to construc...

متن کامل

Numerical Methods for Nonlinear PDEs in Finance

Many problems in finance can be posed in terms of an optimal stochastic control. Some well-known examples include transaction cost/uncertain volatility models [17, 2, 25], passport options [1, 26], unequal borrowing/lending costs in option pricing [9], risk control in reinsurance [23], optimal withdrawals in variable annuities[13], optimal execution of trades [20, 19], and asset allocation [28,...

متن کامل

Overcoming the curse of dimensionality: Solving high-dimensional partial differential equations using deep learning

Developing algorithms for solving high-dimensional partial differential equations (PDEs) has been an exceedingly difficult task for a long time, due to the notoriously difficult problem known as “the curse of dimensionality”. This paper presents a deep learning-based approach that can handle general high-dimensional parabolic PDEs. To this end, the PDEs are reformulated as a control theory prob...

متن کامل

Combined Fixed Point and Policy Iteration for Hamilton-Jacobi-Bellman Equations in Finance

Implicit methods for Hamilton–Jacobi–Bellman (HJB) partial differential equations give rise to highly nonlinear discretized algebraic equations. The classic policy iteration approach may not be efficient in many circumstances. In this article, we derive sufficient conditions to ensure convergence of a combined fixed point policy iteration scheme for the solution of discretized equations. Numeri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006